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Ambient air pollution plays a significant role in an increased risk of incidence and mortality of COVID-19

on a global scale. This study aims to understand the multiscale spatial effect of global air pollution on

COVID-19 mortality. Based on forty-six cities from six countries worldwide between 1 April 2020 and 31

December 2020, a Bayesian space–time hierarchical model was used based on the lag effects of seven, fourteen,

and twenty-one days to quantify the relative risks of NO2 and PM2.5 on the daily death rates of COVID-19,

accounting for the effect of meteorological and human mobility variability based on global and city level.

Results show that positive correlations between air pollution and COVID-19 mortality are observed, with the

relative risks of NO2 and PM2.5 ranging from 1.006 to 1.014 and from 1.002 to 1.004 with the lag effects of

seven, fourteen, and twenty-one days. For the individual city analysis, however, both positive and negative

associations are found between air pollution and daily mortality, showing that the relative risks of NO2 and

PM2.5 are between 0.754 and 1.245 and between 0.888 and 1.032, respectively. The discrepancies in air

pollution risks among cities were demonstrated in this study and further allude to the necessity to explore the

uncertainty in the multiscale air pollution–mortality relationship. Key Words: air pollution, Bayesian space–time
hierarchical model, COVID-19, multiscale analysis.

E
xposure to air pollution has been widely recog-

nized to have a substantial impact on human

health, including respiratory and cardiovascu-

lar disease (Brunekreef and Holgate 2002; Lelieveld

et al. 2015). Rapid urbanization processes have

resulted in various types of air pollution, including

industrial air pollution from fossil fuel combustion,

emissions from biomass burning such as nitrogen

dioxide (NO2), and fine particulate matter with a

diameter less than 2.5 lm (PM2.5; K. He, Huo, and

Zhang 2002; Akimoto 2003). A study has projected

a 50 percent increase in mortality corresponding to

ambient air pollution by 2050 (Lelieveld et al.

2015), revealing the necessity of intensive air quality

control measures on a global scale.
With the rapid emergence of COVID-19, the gov-

ernment-enforced policies, including lockdowns and

social distancing measures, have drastically decreased

socioeconomic activities and led to significant air pollu-

tion changes (Giani et al. 2020; G. He, Pan, and

Tanaka 2020). An existing study has provided evidence

that the lockdowns have caused a 60 percent and a 31

percent decline in NO2 and PM2.5, repectively, and an

increasing trend in O3 until 15 May 2020 in thirty-four

countries (Venter et al. 2020). It provides an unprece-

dented opportunity to estimate the impact of air pollu-

tion counterfactual to business-as-usual situations on

respiratory disease (i.e., COVID-19) on a global scale.

Among various air pollutants, NO2 and PM2.5,

the major pollutants of anthropogenic emission,

have been studied with the potential risks for the

incidence and mortality of COVID-19. Villeneuve

and Goldberg (2020) evaluated both tropospheric

and ground-level NO2 and PM2.5 with daily or

annual mean values based on varied time lag effects

in different regions. Ogen (2020) focused on the sat-

ellite-based NO2 distribution and analyzed its associ-

ation with the fatality of COVID-19 in France,

Germany, Italy, and Spain and further indicated the

close relationship between long-term exposure to

NO2 and COVID-19 fatality. A study on China

based on two-week confirmed cases of COVID-19

suggests that a 10 mg/m3 increase in NO2 and PM2.5

is associated with 6.94 percent and 2.24 percent
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increases in the confirmed cases based on the lag

effect of 0 to 14 (Zhu et al. 2020a). However, a

study proposed by Gujral and Sinha (2021) shows a

negative association between ground-based PM2.5

and confirmed COVID-19 cases in Los Angeles,

California, indicating the discrepancies of air

pollution–COVID-19 incidences in different areas.
Other determinants of COVID-19 including

meteorological and socioeconomic factors are

required to be controlled when estimating the associ-

ation of air pollution and COVID-19 incidence and

mortality (Chowkwanyun and Reed 2020; Sarkodie

and Owusu 2020; Yancy 2020; Kwok et al. 2021).

Xie and Zhu (2020) adopted 122 cities from China

within one month and revealed a positive linear

relationship between mean temperature and the

number of confirmed COVID-19 cases. In contrast,

Shao, Xie, and Zhu (2021) suggested that on a

global scale, ambient temperature is negatively asso-

ciated with COVID-19 transmission mediated by

human mobilities. Meteorological factors also

include humidity and wind speed, in which a one-

unit increase of absolute humidity corresponds to a

decreasing trend of COVID-19 mortality in Wuhan,

China (Ma et al. 2020), and cities with low wind

speed, associated with atmospheric stability, had

higher rates of COVID-19 incidence and mortality

(Coccia 2021). Socioeconomic factors such as built

environment, population, and human mobilities

have also been considered in epidemiological model-

ing (Huang, Kwan, and Kan 2021; Kan et al. 2021;

Oyedotun and Moonsammy 2021; Zhai et al. 2021).

Existing research has revealed that higher between-

ness centrality of transport nodes and population

density in built-up regions are positively associated

with COVID-19 infection ratios in China (Huang

and Kwan 2021; S. Li, Ma, and Zhang 2021).

Moreover, studies have estimated the COVID-19

infectious transmission by modeling human mobility

patterns (Chang et al. 2021) and suggested the effec-

tiveness of travel restrictions combined with trans-

mission reduction interventions on mitigating the

COVID-19 epidemic (Chinazzi et al. 2020).

Statistical models to estimate the association

between air pollution and COVID-19 incidence and

mortality vary among studies. Existing research has

widely used Pearson correlation (Bashir et al. 2020),

multiple linear regression (Andr�ee 2020; Coccia

2020; Barnett-Itzhaki and Levi 2021), difference-in-

differences models (G. He, Pan, and Tanaka 2020;

Ming et al. 2020), scenario analysis (Shan et al.

2021), generalized linear models (GLMs; Travaglio

et al. 2021), and generalized additive models

(GAMs; Prata, Rodrigues, and Bermejo 2020; Zhu

et al. 2020b). Because these models were proposed

in different areas with varied time lag effects, model

comparisons based on the same spatiotemporal scales

are required to assess their accuracies.

Despite the analysis of the different air pollution

metrics, additional determinants including meteorolog-

ical and human mobility factors, and varied statistical

models that have been discussed, existing studies on

COVID-19 incidence and mortality mainly focused on

the city and country levels. Considering the pandemic

transmission trends among countries, it is necessary to

study a wider global perspective. Although several

studies have investigated the global patterns of air pol-

lution and COVID-19 epidemic variation (Forster

et al. 2020; Le Qu�er�e et al. 2020; Venter et al. 2020),

lacking is a deeper understanding of the impact of the

global trending air pollution mediated by meteorologi-

cal and human mobility patterns. Moreover, the influ-

ence of multiscale spatial analysis should be

considered to reduce the biases caused by constant

spatial units. In addition, the performance of models

that have been proposed in the association analysis

needs to be evaluated to ensure model accuracy.

In this study, we focus on the association between

air pollution and COVID-19 mortality on a global

scale. Based on forty-six cities from six countries

between 1 April 2020 and 31 December 2020, a

Bayesian space–time hierarchical model (BSTHM)

was used to estimate the impact of ground-based air

pollution including NO2 and PM2.5 on COVID-19

mortality, controlling for the variables of meteorologi-

cal factors and human mobility frequencies. The rela-

tive risks (RRs) of different air pollutants were

estimated based on the overall global scale and spatial

multiscale perspective. In addition, model compari-

sons were conducted to evaluate the effectiveness of

the GLM, GAM, and BSTHM.

Materials and Methods

Study Area

Considering the data availability, including the

exposure to air pollution and the corresponding

COVID-19 deaths on a finer spatial level, we

selected forty-six cities from six countries.

Information collected consisted of high-quality air
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station data, COVID-19 mortality data, and other

controlling variables between 1 April and 31

December. As shown in Table 1, five cities from

Canada, one city from Germany, one city from

China, two cities from Mexico, one city from the

Netherlands, and thirty-six cities and counties

from the United States were selected as the

study areas.

Air Pollution and Meteorological Data

Although data from satellites such as

TROPOspheric Monitoring Instrument in Sentinel-5

Precursor show the potential to monitor spatiotem-

poral air pollution distribution on a global scale, the

column concentration obtained from the satellite

data cannot efficiently represent ground-level air

pollutants. To fill this gap, this study adopted sta-

tion-based air pollution and meteorological data

from the Air Quality Open Data Platform (see

https://aqicn.org/data-platform/covid19/). Specifically,

daily air pollutants including NO2 and PM2.5 and

daily meteorological data including daily humidity,

pressure, temperature, and wind speed between 1

April and 31 December were collected from the

selected cities. On this basis, missing values from

the daily air pollution and meteorological data were

further processed using the KalmanSmoother based

on an autoregressive integrated moving average

model (Bishop and Welch 2001).

Mobility Data from Apple

Human mobilities play a significant role in esti-

mating epidemic disease transmission. To analyze

the effect of human mobility patterns in different
regions, daily mobility data were collected from the

Apple Mobility Trends Reports (see https://covid19.
apple.com/mobility). Specifically, the data calculate

the comparative trip patterns for the report date to

the baseline day (13 January 2020). The mobility
data take 100 as the baseline, with the negative

changes lower than 100 and the positive changes
higher than 100. In this study, two types of transpor-

tation are considered: driving and walking. In

addition, missing values in the temporal mobility
data were filled using the autoregressive integrated

moving average model.

Other Data as Controlling Variables

Four data sets, including accessibility to health
care, the global friction surface, the NOAA Climate

Data Record of Advanced Very High Resolution
Radiometer (AVHRR) Normalized Difference

Vegetation Index (NDVI), and the nighttime data

from the Visible Infrared Imaging Radiometer Suite
Day/Night Band (DNB) were adopted to distinguish

additional physical and socioeconomic conditions

among cities. In particular, accessibility to health
care in the year 2019, which quantifies the land-

based travel time to the nearest hospital or clinic,
was averaged into a city scale. The global friction

surface in 2019, enumerating the travel speed for all

land pixels, which is considered a potential indicator
for estimating COVID-19 transmission, was also

averaged into the city scale. Both the accessibility to
health care data set and the global friction surface

data set were collected from the research proposed

by Weiss et al. (2020). In addition, city-level aver-
aged NDVI and DNB radiance values between 1

Table 1. Selected countries and cities as study areas

Country Cities and counties

Canada Edmonton, Calgary, Ottawa, Toronto, Montreal

Germany Berlin

China Hong Kong

Mexico Guadalajara, Monterrey

Netherlands Amsterdam

United States Ada, Alameda, Bernalillo, Clark, Cook, Dallas, Denver, District of Columbia,

Duval, El Paso, Franklin, Fresno, Fulton, Harris, Hartford, Henrico, Hinds,

King, Los Angeles, Maricopa, Marion, Milwaukee, Multnomah, New York

City, Oklahoma, Philadelphia, Pima, Providence, Ramsey, Salt Lake, San

Diego, San Francisco, Santa Clara, Suffolk, Wake, Wayne

Global Air Pollution and COVID-19 Mortality 3
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April and 31 December were calculated separately
from the NOAA Climate Data Record of AVHRR
NDVI and Visible Infrared Imaging Radiometer

Suite DNB nighttime data. In addition, the global
population in 2019 was collected from LandScan
(see https://landscan.ornl.gov) as the offset variable

in the statistical analysis in the following section.

COVID-19 Data

The COVID-19 mortality data from forty-six

cities between 1 April and 31 December were col-
lected from multiple sources, which are displayed in
Table 2. The daily deaths were calculated based on
the total deaths provided in the COVID-19 data.

Statistical Models

The BSTHM, made up of the hierarchical Bayesian
model and the space–time interaction model, consists

of three components: the overall spatial, temporal, and
space–time interaction. It has been commonly applied
in many fields such as public health (Knorr-Held 2000;

Richardson, Abellan, and Best 2006; Liao et al. 2016),
population assessment (Wang et al. 2021), and air pol-
lution modeling (J. Li, J. Wang et al. 2018; J. Li, N.

Wang et al. 2018). Compared with other statistical
models such as the GLM and GAM, hierarchical
Bayesian models accommodate unobserved values and

prior probability distributions to improve estimation
accuracies (Dunson 2001).

Specifically, we assume that yit is the deaths in the
city i ¼ ð1, 2, :::, NÞ at the time point t ¼
ð1, 2, :::, TÞ, the number of daily deaths can be mod-
eled by the Poisson regression with the log link function

yit � Poisson niritð Þ, (1)

where ni indicates the base distribution in city i, and
rit represents the underlying mortality risk, which
can be further modeled as follows:

logðritÞ ¼ aþ hi þ dt þ cit þ bno2xit, no2 þ bpm25xit, pm25

þ bhumixit, humi þ bpresxit, pres þ btempxit, temp

þ bwindxit,wind þ bdrivingxit, driving

þ bwalkingxit,walking þ baccexi, acce þ bfricxi, fric

þ bNDVIxi,NDVI þ bnightxi, night þ logðxi, popÞ
þ eit

(2)

in which bno2, bpm25, bhumi, bpres, btemp, bwind,
bdriving, bwalking, bacce, bfric, bNDVI, and bnight refer to

the regression coefficients of daily NO2, PM2.5,
humidity, pressure, mean temperature, mean wind
speed, and the daily trip based on driving and walk-
ing transportation, accessibility to health care, the

degree of friction, NDVI, and the DNB radiance val-
ues with the following prior distributions pð�Þ
assigned to the coefficients:

p bð Þ ¼ N 0, 1000ð Þ: (3)

In addition, a indicates the sum of the intercept. hi,
dt, and cit refer to the spatial main effect, temporal
main effect, and space–time interaction, respectively.

logðxi, popÞ represents the offset variable based on the
total population in each region. eit is the additional
residual term. Moreover, the seven-, fourteen-, and

twenty-one-day lag effects of socioeconomic and
environmental factors on COVID-19 mortality
are considered.

Prior distributions are further assigned to the pre-
ceding parameters. The Besag–York–Molli�e model is
employed to the spatial main effect, temporal main
effect hi and dt, in which the Besag–York–Molli�e
model is a convolution of a spatially structured
and spatially unstructured random effect (Besag,
York, and Molli�e 1991). Specifically, the spatial

structure is applied by the conditional autoregres-
sive models. The priors of hi, dt, and cit are mod-
eled as follows:

Table 2. Data sources of COVID-19 mortality in different countries

Country Data sources

Canada COVID-19 Canada Open Data Working Group (https://github.com/ccodwg/Covid19Canada)

Germany Das Datenportal f€ur Deutschland (https://www.govdata.de)

China Data.gov.hk (https://data.gov.hk/en-data/dataset/hk-dh-chpsebcddr-novel-infectious-agent)

Mexico Covid-19 M�exico (https://datos.covid-19.conacyt.mx/#DownZCSV)

Netherlands Dataregister van de Nederlandse Overheid (https://data.overheid.nl)

United States The New York Times (https://github.com/nytimes/covid-19-data)
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where W ¼ ðwijÞ and D ¼ ðdtjÞ represent the neigh-

borhood matrix and the time adjacency, respectively,

and wij ¼ 1 and dtj ¼ 1 if areas (i, j) share a common

border and time j� tj j ¼ 1; otherwise, wij ¼ 0 and

dtj ¼ 0: (qs,qtÞ and (ss, st, skÞ refer to the parameters

of the fixed uniform and inverse-gamma distribution,

respectively, the prior of which is modeled as

qs, qt � Uniform 0, 1ð Þ (7)

ss, st, sk � Inverse�Gamma 1, 0:01ð Þ: (8)

Specifically, the neighborhood matrix is constructed

based on the spatial distribution among cities, with

wij ¼ 1 among each pair of adjacent cities and wij ¼
0 otherwise.

The proposed BSTHM was implemented the

Markov chain Monte Carlo method and Gibbs sam-

pling. Air pollutants including daily NO2 and PM2.5

are used for estimating the number of deaths, and

meteorological factors, human mobilities, population,

and other factors are considered as controlled varia-

bles. The collinearity of variables was assessed using

the variance inflation factor. Then, the estimated

RR, which is proposed based on the exponential

transformation of the modeling coefficients, was cal-

culated to estimate the impact of air pollutants on

the changes in COVID-19 mortality.

Results

Descriptive Analysis

Table 3 shows the statistics for the daily deaths

from COVID-19, air pollutants, meteorological fac-

tors, human mobility, population, and other control-

ling variables in each city. Number of daily deaths

varies from 0 to 1,221, and daily NO2 and PM2.5 are

7.186 ppb and 33.783 mg/m3, respectively. The mean

daily humidity, pressure, temperature, and wind

speed are 62.708 percent, 1,011.274mb, 17.018 �C,
and 2.687m/s, respectively. For urban mobility, the

daily changes of driving and walking transportation

are 103.482 and 110.176, respectively. In addition,

the average values of accessibility to health care, the

degree of friction, NDVI, and nighttime radiance are

12.191, 0.004, 1,652.558, and 18.484, respectively.

Table 3. Summary of the ground station data, meteorological data, mobility data, other controlling variables, and
COVID-19 mortality

Variables
Daily measures

Minimum Maximum M SD Variance

Daily deaths 0 1,221 7.63 33.481 1,120.971

Air pollutant

NO2 (ppb) 0.100 49.100 7.186 5.324 28.349

PM2.5 (mg/m
3) 0.000 404.000 33.783 21.117 445.942

Meteorological factors

Humidity (%) 0.000 100.000 62.708 21.740 472.630

Pressure (mb) 415.400 1,039.500 1,011.274 26.257 689.446

Temperature (�C) –17.700 39.200 17.018 8.710 75.867

Wind speed (m/s) 0.034 17.000 2.687 1.630 2.657

Human mobility

Driving 22.390 209.340 103.482 30.682 941.367

Walking 7.870 295.690 110.176 45.153 2,038.763

Population 2.471Eþ 05 1.008Eþ 07 2.037Eþ 06 2.041Eþ 06 4.164Eþ 12

Other controlling variables

Accessibility to health care 1.597 47.056 12.191 11.282 127.274

Friction 0.001 0.013 0.004 0.003 0.000

NDVI 953.004 2,435.288 1,652.558 399.947 159,957.745

Nighttime radiance 1.136 49.768 18.484 13.317 177.333

Note: NDVI¼Normalized Difference Vegetation Index.

Global Air Pollution and COVID-19 Mortality 5



Overall BSTHM Results

Figure 1 shows the RR with a 95 percent credible

interval of air pollutants with the COVID-19 mortal-

ity with time lag of seven, fourteen, and twenty-one

days. In summary, the increasing values of NO2 and

PM2.5 are positively correlated with COVID-19 mor-

tality, indicating increasing daily deaths with higher

NO2 and PM2.5 exposure. It is reasonable that both

NO2 and PM2.5 and COVID-19 mortality have a pos-

itive association because a decrease in NO2 and

PM2.5 has been demonstrated to reduce respiratory

mortality in other studies (Di et al. 2017; Liu et al.

2019; Khomenko et al. 2021). In addition, the associ-

ation between NO2, PM2.5, and COVID-19 mortality

varies according to the different time lag effects.
In particular, the RR of a 1 ppb increase in NO2

with a seven-day lag effect is 1.009 (confidence

interval [CI] [1.003, 1.014]). For the lag effect of

fourteen days, the RR is 1.014 (CI [1.014, 1.020]),

which is approximately 0.5 percent higher than the

RR based on the seven-day lag effect. Meanwhile,

the RR of NO2 with a twenty-one-day lag effect is

1.006 (CI [0.999, 1.012]), which is 0.3 percent and

0.8 percent lower than those of seven- and twenty-

one-day lag effects. For the RR of PM2.5, similar pat-

terns are revealed with the lag effects of seven and

fourteen days, representing approximately a 0.2 per-

cent increase (CI [1.001, 1.003]) in daily deaths

with a 1 mg/m3 increase in PM2.5. Changes are

revealed in the lag effect of twenty-one days, show-

ing the RR of 1.004 (CI [1.002, 1.006]), approxi-

mately 0.2 percent higher than the RRs based on

seven- and fourteen-day lag effects.

Despite the varied lag effects (the association

analysis without time lag effects is excluded

considering the incubation period of COVID-19),

the results indicate that higher exposures to NO2

and PM2.5 are estimated to increase the risks of

COVID-19 mortality from the perspective of global

cities. Because this study was conducted between 1

April and 31 December, the potential influence of

lockdown and restricted social distancing policies

was considered, measured by human mobility data.

On the other hand, because public vaccination

started at the end of 2020 (Mathieu et al. 2021), its

impacts on COVID-19 mortality are not discussed in

this study. Because the proposed controlling varia-

bles in BSTHM might not completely depict the

environmental and socioeconomic conditions of

individual cities, the discrepancies of RRs among cit-

ies are not discussed. To fill this gap, the air pollu-

tion–mortality association analysis is proposed in the

following section.

City-Level Analysis

Changes in the study areas show a significant

impact on the air pollution–COVID-19 mortality

analysis. After analyzing the overall impacts of

NO2 and PM2.5 on COVID-19 mortality based on

all of the selected cities, we further focus on the

RRs of individual cities separately. The air

pollution–COVID-19 mortality association of each

city was estimated using Bayesian hierarchical

modeling. Because no spatial adjacency issue was

found in individual cities, the spatial effect was

removed from the proposed models.
Figure 2 shows the RRs of NO2 with time lag

effects of seven, fourteen, and twenty-one days of

individual cities. In summary, the RRs of NO2 expo-

sure vary among cities. Despite the different time lag

Figure 1. Relative risk (with 95 percent confidence interval) of (A) NO2 and (B) PM2.5 on COVID-19 mortality with different time

lag effects.

6 Meng et al.



effects, most of the cities show a positive impact of

NO2–COVID-19 mortality association. It should

be noted that significant discrepancies of relative

risks are revealed among Henrico in the United

States and other cities, showing a large range of

CIs based on all lag effects, with dramatically

lower and higher RRs based on seven- and four-

teen-day lag effects, respectively. No significant

differences in RRs are revealed among other cities

for the lag effects of seven, fourteen, and twenty-

one days, within values between 0.948 and 1.138,

between 0.973 and 1.152, and between 0.935 and

1.141. The results, however, still revealed a nega-

tive association between NO2 and COVID-19

mortality in many cities, such as the RRs based on

fourteen- and twenty-one-day lag effects in Hong

Kong in China and fourteen-day lag effect–based

RRs in Suffolk and Wake in the United States.

Further explanations of the negative trends are dis-

cussed later in this section.
The RRs of PM2.5 on the daily death rates of

COVID-19 are shown in Figure 3. The estimated

RRs based on seven-, fourteen-, and twenty-one-day

effects range between 0.887 and 1.032, between

0.968 and 1.013, and between 0.971 and 1.023,

respectively. As with the RRs of NO2, no significant

changes are shown in most of the cities. Anomalies

are observed, however, indicating significant discrep-

ancies or negative trends, in several cities, such as

the seven-day lag effect–based RR in Providence and

Pima in the United States and Edmonton and

Calgary in Canada; a fourteen-day lag effect–based

RR in Hong Kong and Pima, Henrico, and Hartford

in the United States; and a twenty-one-day lag

effect–based RR in Calgary and Edmonton in

Canada, Hong Kong in China, and Pima in the

United States.
The question of how to interpret these anomalies

in the RRs is important in the air pollution evalua-

tion, especially the anthropogenic emissions. To

solve this issue, deeper investigation on daily deaths,

NO2 and PM2.5 emission, and human mobility for

individual cities is proposed. Because the number of

deaths could influence the RR estimation (a

smaller number of daily deaths, such as zero deaths

per day, could lead to estimation biases), the total

deaths from COVID-19 from 1 April to 31

December in individual cities were calculated. As

Figure 2. Relative risk (with 95 percent confidence interval) of NO2 with time lag effects of (A) seven days, (B) fourteen days, and (C)

twenty-one days at the city scale.
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displayed in Figure 4, a small number of total

deaths are found in cities such as Hong Kong in

China; Calgary and Ottawa in Canada; and Hinds,

Henrico, Multnomah, and Salt Lake in the United

States, with the total number of deaths lower than

600. It is consistent with the RR biases that the

impacts of NO2 are dramatically lower and higher

with seven- and fourteen-day lag effects with a

large range of CIs in Henrico in the United States,

as well as the negative RR in Salt Lake in the

United States. The small number of deaths also

provides hints in evaluating the RR biases of

PM2.5, suggesting that the smaller number of

deaths might cause the significant negative RRs in

Hong Kong in China, Calgary and Ottawa in

Canada, and Multnomah in the United States. In

summary, the potential impact of air pollution

could be estimated with significant biases faced

with a smaller number of daily deaths. There are

also other potential factors, however, that could

influence the RR estimation.

As with the small number of deaths, the level of

air pollution plays a dominant role in evaluating the

potential risks of air pollution in different cities

(Chen et al. 2012). Figure 5 displays the average

daily emissions of NO2 and PM2.5 from 1 April to

31 December in each city. Several cities with lower

levels of NO2 and PM2.5 reported anomalies in RR

estimation. For example, Henrico in the United

States, with average daily NO2 emissions lower than

2 ppb, shows significant negative trends in evaluating

the RRs of NO2 on COVID-19 mortality. The

lower emissions of PM2.5 in Calgary and Edmonton

in Canada, which are approximately 20 mg/m3, also

provide evidence on the biases of RR estimation.

Although lower level air pollution could reduce

the impact of NO2 and PM2.5 on mortality assess-

ment, leading to biases in RR estimation, no evi-

dence has been provided about whether different

air pollution levels are significantly correlated with

the accuracies of potential risk estimation on

cause-specific mortality.

Our analysis has also considered the levels of

human activity restriction to assess the role of

anthropogenic emissions. Generally, the decrease in

driving trips could reduce anthropogenic emissions

(Meng et al. 2021), and the lower level walking

activities show the potential to reduce the risk of

virus transmission (Chu et al. 2020). This study pro-

posed a mobility variation index to measure the

Figure 3. Relative risk (with 95 percent confidence interval) of PM2.5 with time lag effects of (A) seven days, (B) fourteen days, and

(C) twenty-one days at the city scale.
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Figure 4. Total deaths from COVID-19 between 1 April 2020 and 31 December 2020 in individual cities.

Figure 5. Average (A) NO2 and (B) PM2.5 emission between 1 April 2020 and 31 December 2020 of individual cities.
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overall trends and changes of driving and walking

transportation in each city using the Apple mobility
data:

where MVi represents the quantified mobility

variation of the ith city. Mobilitymax, i and Mobilitymin, i
indicate the maximum and minimum values of daily

mobility changes, respectively, which are calculated

from the daily mobility data represented by the

Apple Mobility Trends Reports. Because the

mobility data take 100 as the baseline, the changes

in mobility are scaled to a baseline as 0, with

mobility higher and lower than 0 indicating positive

and negative mobility variation, respectively.

Mobilityi, d refers to the mobility change of the ith
city on the dth day. Specifically, positive and

negative values represent the overall increase and

decrease in human activity patterns, with the higher

absolute values (regardless of the positive or negative

directions) showing a higher degree of

activity changes.
The calculated mobility variations for driving and

walking in forty-six cities are shown in Figure 6. For

driving, Maricopa in the United States reported the

highest level of decreasing activities with the value

of approximately �0.563, whereas Pima in the

United States showed the largest increase of driving

trips (0.408). This indicates that the proposed poli-

cies during COVID-19 yielded a significant influence

on driving transportation, especially the activity

changes during and after the short-term restricted

social distancing policies. For the variation in walk-

ing transportation, Maricopa in the United States

still reported the highest level of decreasing activi-

ties, with a reduction of walking trips of about

�0.463. In addition, Alameda in the United States

reported the largest increase in walking transporta-

tion, with a mobility variation index of approxi-

mately 0.357. Those discrepancies in driving and

walking transportation among cities are significant

for assessing the potential risks of air pollution. For

example, the decrease of driving and walking activi-
ties in Maricopa in the United States could reduce

the emission of PM2.5, leading to the biases of a neg-

ative association with daily deaths based on the lag

effects of seven, fourteen, and twenty-one days.
In summary, the air pollution–COVID-19 mortal-

ity analysis shows discrepancies among individual

cities. Influenced by the number of deaths, air pollu-

tion conditions, and the degree of human mobility

variation, biases (usually the negative impact of air

pollution) exist in evaluating the RRs of NO2 and

PM2.5 in several cities, such as Henrico and Pima in

the United States, Hong Kong in China, and

Calgary in Canada. The negative trends of RRs in

terms of PM2.5 in several cities cannot be explained

in this section, such as Providence and Wayne in

the United States, which are further discussed in the

following sections.

Model Assessment

To evaluate the accuracy of BSTHM, comparative

studies were proposed by involving GLMs and

GAMs. Specifically, GLMs and GAMs with negative

binomials were used to estimate the association

between air pollution with time lag effects (seven-,

fourteen-, and twenty-one-day lags) and COVID-19

mortality. Spatial fixed effects and time fixed effects

are included to control spatial and temporal charac-

teristics. For the implementation of GAMs, the

degrees of freedom, which are applied for the con-

trolling variables including meteorological and

human mobility factors, were selected using the gen-

eralized cross-validation criterion.

The performance of the proposed models, includ-

ing GLM, GAM, and BSTHM, was evaluated by

calculating the root mean square errors (RMSEs).

Specifically, RMSE calculates the standard deviation

MVi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mobilitymax, i�

Pn
d¼1Mobilityi, d=n

ðPn
d¼1 Mobilityi, d=nÞ2

s
,

Pn
d¼1Mobilityi, d � 0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mobilitymin, i
�� ���jPn

d¼1Mobilityi, d=nj
ðPn

d¼1Mobilityi, d=nÞ2
s

,
Pn

d¼1Mobilityi, d<0,

8>>>>><
>>>>>:

(9)
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of the prediction error. As shown in Table 4, the

RMSEs of the GLM for the seven-, fourteen-, and

twenty-one-day lags are 25.181, 21.509, and 15.460,

respectively. The RMSEs of the GAM are 24.317,

19.629, and 15.328, respectively. For the BSTHM

proposed in this study, the RMSEs for the seven-,

fourteen-, and twenty-one-day lags are 0.703, 0.721,

and 0.726, respectively. This indicates that BSTHM

achieves better performance than GLM and GAM.

Note, however, that although a lower value of

RMSE represents better model performance, it could

also lead to an overfitting issue. Because we focus on

the overall trends of model regression instead of clas-

sification, the biases caused by the potential overfit-

ting problem could be reduced. On this basis, the

overall RRs of NO2 and PM2.5 were further esti-

mated and compared among GLM, GAM,

and BSTHM.

Figure 7 shows the RR of NO2 and PM2.5 with a

95 percent CI based on GLM, GAM, and BSTHM.

Table 4. Root mean square error calculated from GLM,
GAM, and BSTHM models with different lag effects

Model Lag 7 Lag 14 Lag 21

GLM 25.181 21.509 15.460

GAM 24.317 19.629 15.328

BSTHM 0.703 0.721 0.726

Note: GLM¼ generalized linear model; GAM¼ generalized additive

model; BSTHM¼Bayesian space–time hierarchical model.

Figure 6. Mobility variation of (A) driving and (B) walking transportation between 1 April 2020 and 31 December of individual cities.
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Generally, overall positive trends are revealed with

the lag effects of seven, fourteen, and twenty-one

days. For the NO2–mortality association, the relative

risks of 1.008 (CI [1.008, 1.015]), 1.011 (CI [1.004,

1.018]), and 1.006 (CI [0.998, 1.014]) are shown

with seven-, fourteen-, and twenty-one-day lag

effects using GLM. Using GAM, the RRs of 1.025

(CI [1.017, 1.032]), 1.026 (CI [1.019, 1.034]), and

1.021 (CI [1.013, 1.029]) are estimated for NO2

under different time lag effects. The relative risks of

BSTHM, as reported earlier, had values of 1.009 (CI

[1.003, 1.014]), 1.014 (CI [0.995, 1.02]), and 1.006

(CI [0.999, 1.012]) under each lag effect scenario.

For the PM2.5–mortality association, the RRs of

GLM, GAM, and BSTHM are 1.004 (CI [1.002,

1.005]), 1.001 (CI [0.999, 1.003]), and 1.002 (CI

[1.001, 1.003]) under the seven-day lag effect; 1.003

(CI [1.002, 1.005]), 1.001 (CI [0.999, 1.003]), and

1.002 (CI [1.001, 1.003]) under the fourteen-day lag

effect; and 1.003 (CI [1.001, 1.004]), 1.001 (CI

[0.999, 1.003]), and 1.004 (CI [1.002, 1.006]) under

the twenty-one-day lag effect.
Based on the relative risk estimation in Figure 7,

one can see that different lag effects including seven,

fourteen, and twenty-one days reveal limited impacts

on the RR variation. Discrepancies are mainly

caused by different models. Compared with GLM

and BSTHM, GAM shows higher relative risks of

NO2 with different lag effects. Similar RR patterns

of NO2 are revealed using GLM and BSTHM, which

are all lower than the RRs of GAM. For the RRs of

PM2.5, lag effects of seven and fourteen days show

similar RR patterns, with GLM exhibiting the high-

est risks and GAM yielding the lowest risks.

Differences are shown in the lag effect of twenty-one

days, with BSTHM reporting the highest risk com-

pared with GAM and GLM. Although discrepancies

are found among different models, which are consis-

tent with the model evaluation in Table 4, the over-

all risk trends based on GLM, GAM, and BSTHM

Figure 7. Relative risk (with 95 percent confidence interval) comparison of (A) NO2 and (B) PM2.5 among GLM, GAM, and BSTHM.

GLM ¼ generalized linear model; GAM ¼ generalized additive model; BSTHM ¼ Bayesian space–time hierarchical model.

12 Meng et al.



are similar, revealing the reliability of the proposed

model for risk estimation.

Discussion

Although studies of air pollution and epidemic

diseases have benefited from existing research that

considers multiperspective physical and socioeco-

nomic factors (Silva et al. 2017; Rahimi et al. 2021;

Srivastava 2021), the local spatial variations of air

pollution–COVID-19 interactions has not been well-

studied. This study explored the association between

daily air pollutants, including NO2 and PM2.5, and

COVID-19 mortality between 1 April and 31

December. The epidemiological analysis focuses on

the RRs of NO2 and PM2.5 to the changes of daily

deaths based on a global scale and individual cities.

The results are consistent with previous studies

that show that higher NO2 and PM2.5 emissions are

associated with increased deaths caused by respira-

tory diseases (Wu et al. 2020; Zoran et al. 2020).

Liu et al. (2019) reported the independent associa-

tion between short-term exposure to PM2.5 and daily

respiratory diseases in more than 600 cities on a

global scale. Moreover, Villeneuve and Goldberg

(2020) provided a literature review on ambient air

pollution and the increased risk of severe acute

respiratory syndrome and COVID-19, with all stud-

ies reporting positive associations. In addition, long-

term exposure to NO2 and PM2.5 was explored by

Zhang et al. (2021), who found a positive associa-

tion with the increasing risks of respira-

tory mortality.
It should be noted that despite the positive trends

on a global scale, several individual cities in this

study showed a negative association between NO2,

PM2.5, and COVID-19 mortality, which is opposite

to the overall global trends. The findings reveal the

impact of multiple spatial scales on estimating air

pollution risks. Previous studies have discussed the

influence of multiscale air pollution on public

health, involving both scales and boundary districts

(Thompson and Selin 2012; Markakis et al. 2014).

Butt et al. (2017) analyzed the influence of PM2.5 in

several regions on the changes of global attributable

deaths, indicating that the increasing global popula-

tion- weighted PM2.5 was mainly dominated by the

increase in China and India. Research by Thompson

and Selin (2012) evaluated the uncertainty of air

quality and health impacts based on different scales,

showing the variation of ozone concentration at 36-,

12-, 4-, and 2-km resolution. Those discrepancies in

RRs were also discussed earlier. The changes in

COVID-19 mortality, the level of air pollution, and

human mobility variation in individual cities are

considered to discuss the RR discrepancies. For

instance, a smaller number of total deaths, lower

level air pollution, and higher level human mobility

variation could lead to biases in RR estimation. The

RR patterns in several cities, such as Providence and

Wayne in the United States, however, were not

explained by these factors. This reveals the fact that

compared with the classic risk factors, short-term

exposure to air pollution shows a lower impact on

health conditions that could lead to the nonpositive

associations (Liu et al. 2019).
This study has a few new findings. First, it pro-

vides evidence on potential risks of air pollution

exposure under the scenario of lockdown and

restricted social distancing policies before vaccina-

tion. Second, both global and city-level analyses

were investigated and compared to illustrate the

impact of multiscale variation on risk estimation of

air pollution. This research reinforces the evidence

of the discrepancies of linkages between daily NO2,

PM2.5, and COVID-19 mortality on the city scale

and global scale.
There are also some limitations of this study.

First, cities selected in this study are limited due to

the availability of multisourced daily data. For

instance, cities that lack ground-level air pollution

data were excluded from this study. Air pollution

exposure estimation based on the integration of

ground-level and satellite-level air pollution data is

not considered in this study because of the biases on

the fine-scale daily data estimation (Sullivan and

Krupnick 2018). Thus, the coverage of the collected

data might be not representative to estimate the air

pollutants–COVID-19 mortality on a complete

global scale. Moreover, although the overall trends

of air pollution risks among models were assessed,

the discrepancies in RRs caused by GLM, GAM,

and BSTHM in individual cities were not discussed.

Evidence of estimation biases could be provided by

comparing individual city-level relative risks of NO2

and PM2.5. For instance, by comparing the RRs of

PM2.5 using GLM and GAM in individual cities, the

negative association trends in Providence in the

United States estimated by BSTHM could be fur-

ther evaluated.
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Conclusion

Understanding the association between multiscale

air pollution and COVID-19 mortality is significant

in finding the potential factors that could increase

the severity of COVID-19 infections. This study pro-

vided a global perspective of the ground-level daily

NO2 and PM2.5 between 1 April and 31 December

2020 and estimated multiscale RRs of these air pol-

lutants accounting for the meteorological and human

mobility factors using a BSTHM model.
Results suggested a significant relationship

between daily ground-level air pollutants and

COVID-19 mortality based on BSTHM. With the

lag effects of seven, fourteen, and twenty-one days,

the RRs of NO2 and PM2.5, ranging from 1.006 to

1.014 and from 1.002 to 1.004, respectively, are

higher with the increasing number of daily deaths.

Moreover, variations in RRs are shown among indi-

vidual cities. RRs of NO2 based on seven-, fourteen-,

and twenty-one-day lag effects are between 0.754

and 1.138, between 0.973 and 1.245, and between

0.935 and 1.141, respectively, whereas the RRs of

PM2.5 range from 0.888 to 1.032, from 0.968 to

1.013, and from 0.971 to 1.023 with the lag effects

of seven, fourteen, and twenty-one days, respectively.

Findings reveal the discrepancies in assessing air pol-

lution in individual cities compared with global

analysis, exhibiting the need to investigate the

potential impact of the multiscale spatial effect of

global air pollution on COVID-19 mortality.
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